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I. Nomenclature

↵ angle of attack
C

D

drag coe�cient
C

L

lift coe�cient
C

T

thrust coe�cient
d static control variable
D drag
� collocation defect
⌘ elevator deflection angle
g gravitational acceleration
� flight path angle
�

a

atmospheric ratio of specific heats
h altitude
L lift
LGL Legendre-Gauss-Lobatto
M Mach number
P atmospheric pressure
q dynamic pressure
r range
R atmospheric gas constant
⇢ atmospheric density
RHS right hand side
S reference aerodynamic area
SFC thrust specific fuel consumption
t time
⌧ throttle setting
Temp atmospheric temperature
T thrust
⌧ throttle parameter
u dynamic control variable
v velocity
W

f

fuel weight
W

total

total aircraft weight
x state variable
XDSM extended design structure matrix
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II. Abstract

Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging
aircraft technologies have introduced new demands on trajectory analysis that current tools are not well
suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing
wings requires consideration of the operational behavior as well as the physical design characteristics of the
aircraft. The addition of operational variables can dramatically increase the number of design variables which
motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization
problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto
based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization
framework. This collocation method uses an implicit time integration scheme that provides a high degree of
sparsity and thus several potential options for parallelization. The performance of the new implementation
was investigated via a series of single and multi-trajectory optimizations using a combination of parallel
computing and constraint aggregation. The computational performance results show that in order to take full
advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and
the derivative computations themselves. The constraint aggregation results showed a significant numerical
challenge due to di�culty in achieving tight convergence tolerances. Overall, the results demonstrate the
value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future
application of this collocation based method to the design of aircraft with where operational scheduling of
technologies is key to achieving good performance.

III. Introduction

Trajectory analysis performs a key role in the design of aircraft by modeling performance over the
course of a mission. Often, for aircraft, fuel burn or range are the primary quantities of interest, but

trajectory analysis results are also important for aircraft noise prediction, propulsion sizing, and operational
performance prediction. Trajectory analysis tools model aircraft performance over time via numerical inte-
gration of governing equations of motion. There are many implementations of mission analysis, using di↵erent
formulations and methods. Flight Optimization System (FLOPS)1 is a NASA developed code built with
the well developed energy state approximation2 that simplifies trajectory analysis to an exchange between
potential and kinetic energy. The simplification allows for an e�cient implementation, but e↵ectively uses
a 2 degree of freedom model that lacks information about angle of attack, roll, and yaw. Two newer tools,
SUAVE3 and PyMission,4 abandon the energy state approximation in favor of a collocation based approach
that does account for aircraft angle of attack. The OTIS5 tool also uses collocation based approach, but
combined with an implicit time integration scheme that o↵ers potential computational savings. OTIS has
more commonly been applied to spacecraft trajectory optimization and optimal control, but its approach is
equally applicable to aircraft trajectory optimization.6

The advent of fuel saving operational concepts like continuous decent trajectories7 and formation flying,8,9

have made trajectory analysis a more central part of aircraft design. Similarly, new aircraft technologies
such as active load alleviation,10 hybrid electric propulsion,11,12 and morphing wings13,14 couple the phys-
ical design of the aircraft with the time-varying characteristics of its operation. While trajectory analysis
has always been an important analysis in the aircraft design process, these new operational concepts and
technologies have elevated its importance and motivates a much tighter integration of mission analysis with
aerodynamics, weights, and propulsion models into large multidisciplinary models.

The development of large multidisciplinary aircraft models, including trajectory analysis, leads to complex
problems with large numbers of disciplines and many design variables. These models can have 100’s or 1000’s
of design variables because of the need to specify schedules with reasonable resolution across long time scales.
This naturally encourages the application of multidisciplinary design optimization (MDO) methods. When
the numbers of design variables grow large, gradient based optimization with analytic derivatives is the
most e↵ective optimization technique. However, older tools such as FLOPS and OTIS are not well suited to
this approach because neither provides analytic derivatives and both present implementation challenges with
integration into a larger multi-disciplinary model. Addressing these implementation challenges was one of the
major motivations behind SUAVE, which has demonstrated tight propulsion design coupling3 and a modular
design that can easily handle a broad range of aircraft types and missions.15 PyMission was designed to
provide adjoint analytic derivatives and to integrate tightly with high fideility analyses.16 The SUAVE and
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PyMission work clearly demonstrated the value of integrating trajectory analysis into a multidisciplinary
design optimization to integrate mission performance as part of objective function. The PyMission work
also shows how adjoint analytic derivatives, applied to aircraft mission analysis, enable design optimization
on a large number of design variables. The capability to handle larger design spaces is a key feature that
enables the method to e�ciently handle problems that include time-varying control schedules.

As stated earlier, both SUAVE and PyMission implement a collocation method with an explicit time
integration scheme. This paper discusses the development of a collocation method that employs an implicit,
Legendre-Gauss-Lobatto (LGL) collocation scheme, with adjoint derivatives, built within the OpenMDAO
framework.17 Prior work has shown a significant computational advantage for the implicit approach,6 which
motivates this investigation. The intent of this work is to test the applicability of the implicit LGL collocation
scheme to aircraft mission analysis within a multidisciplinary design optimization context. We explore use
of various techniques to reduce the time required to find optimal aircraft trajectories, including solving
derivatives analytically in both forward and adjoint modes, parallelization of derivative computation, and
parallelization of multiple trajectories solved simultaneously.

IV. Approach

This work consists of two primary e↵orts. First we develop a modular, general optimal control tool
within the OpenMDAO framework. The tool is general in that it is left to the user provide the “right-
hand-side” which provide both the equations of motion for the dynamics involved, as well as any auxiliary
calculations which may be useful as outputs, nonlinear constraints, or objective variables. The second e↵ort
is the development of the equations-of-motion for aircraft trajectory optimization, based on the approach
originally proposed by Kao et. al,4 which provide a good balance of e�ciency and fidelity.

A. Overview of the LGL Collocation Scheme

The optimal control techniques employed in this work were heavily influenced by those in OTIS.5 OTIS
allows di↵erent optimal control techniques to be employed depending on the problem at hand, including
collocation and multiple shooting techniques. In a similar fashion, this e↵ort focused on a tool that would
be expandable to a variety of techniques in the future, although we concentrated on a collocation-based
technique for the problem at hand. Collocation techniques are computationally e�cient in that they require
relatively few evaluations of the equations of motion compared to shooting methods. The biggest drawback
of collocation is that it is common to need to know the order of events which cause discontinuities in the
state variables w.r.t. time a priori. Events which cause discontinuities, such as mass jettisons or engine
startup/shutdown, are not a factor in the commercial aircraft trajectory analyzed here.

Implicit collocation and pseudospectral methods come in a variety of forms.18 Paris and Hargraves
employed a Hermite-Simpson based approach in the original version of OTIS.6 Solutions using a Legendre-
Gauss-Lobatto based technique have been developed by Herman and Conway19 and Fahroo and Ross,20 and
were incorporated into later version of OTIS. Approaches based on the Legendre-Gauss-Radau quadrature,
such as the LGL scheme, have become increasingly popular and are used on a variety of applications.21

In the LGL scheme, dynamics are modeled by an interpolating piecewise polynomial describing the state
variable as a function of time. Each physical state variable is associated with its own piecewise polynomial.
A notional cartoon of a collocating polynomial is shown in Figure 1. The cardinal nodes, red circles, of the
polynomial are varied such that the shape of the polynomial matches the physics prescribed a given set of
equations of motion. The errors between the polynomial and the equations of motion, called defects, are
measured at the interior nodes, blue squares, by comparing the slope of the polynomial with the predicted
time derivative from the equations of motion at that point.

For a problem with multiple states, there is one piecewise polynomial and associated set of defects
measured at the interior nodes for each state. The collection of all the equations of motion for all the
states is referred to as the right-hand-side of the problem. The right-hand-side relies on several parameters,
including the current value of the state variables (x) and time (t). In addition, other parameters may be
necessary. These are generally divided into two groups; dynamic controls (u) whose values change in time,
and static controls (d) whose values are fixed throughout the phase. Practically that means that static
controls have a single scalar value used throughout a phase and the dynamic controls are array variables
with the same number of values as the number of cardinal+interior nodes in the phase.
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Figure 1. A representation of a collocation segment with three cardinal nodes and two interior nodes. Collo-
cation defects are the di↵erence between the slope of the interpolating polynomial (ẋ) and the time-derivative
given by the equations of motion (f). The equations of motion are a function of time, states, dynamic controls,
and static controls.

For any given problem, the trajectory is broken down one or more phases. Within a phase, the equations
of motion are held constant, but they can change between phases. Using the same equations of motion
within two adjacent phases allows for discontinuous changes such as stage separation for a launch vehicle.
Each phase has one or more segments. Each segment is consists of a set of nodes on which polynomials
representing the state and control time-histories is based. It is often beneficial to vary the length of di↵erent
segments to better refine the model in areas of high dynamics. Similarly, each segment can be modeled as
a polynomial of a di↵erent order. The spacing and order of the various segments define the computational
grid for the collocation problem. Grid refinement methods can be used automatically adjust the duration of
segments to provide the highest accuracy at the lowest overall cost.22–24

The collocation technique transforms an optimal control problem into a nonlinear programming problem.
Various software packages exists which can solve this nonlinear programming problem. In collocation tech-
niques, nonlinear optimizers are used to minimize some objective function (e.g. minimize fuel-burn for an
aircraft trajectory) by varying the initial and final times of the phases, the values of the static controls, the
values of the state variables at the cardinal nodes, and the values of the dynamic controls at the cardinal and
interior nodes. The defects are posed as equality constraints which must be equal to zero for the solution to
be feasible. Treating the state variables as design variables and the defect constraints as equality constraints
results in the Simultaneous Analysis and Design (SAND) architecture,25,26 which allows the whole problem
to be solved as a single NLP problem. In this work, the SNOPT optimizer27 was employed to solve the NLP
problem, which uses is an SQP based method.

In addition to constraining the defect values, the user can impose additional nonlinear constraints on the
problem. These come in two forms; boundary constraints and path constraints. Boundary constraints can be
imposed on the initial or final value of a variable in a phase. Path constraints are generally evaluated at each
node, both cardinal and interior, within the phase. For a phase with n

c

cardinal nodes and n
i

interior nodes,
a single path constraint therefore adds n

c

+ n
i

constraints to the problem. In later sections we explore the
use of constraint aggregation techniques to reduce the number of NLP constraints due to a path constraint
to two.

B. Optimal Control within OpenMDAO

OpenMDAO provides two key constructs to build models with. Components represent the smallest block
of computational work, where the actual equations defining parts of the model are implemented. Sets of
components are then assembled with a Group, which acts as a container and manages the data passing
between them. Groups can contain both individual components, as well as other groups which allows for the
construction of a model hierarchy.

To implement an LGL collocation scheme within the OpenMDAO framework, each phase is defined as a
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Figure 2. The XDSM for a single phase of an LGL collocation problem as implemented in OpenMDAO.

group, showin in Figure 2. Within the phase there are a number of components, represented as the rectangles,
that handle the mathematics of evaluating the interpolating polynomials for the segments, and computing
state values and their the derivatives at the interior nodes. To compute the defects, the right-hand-side must
also be evaluated twice, once at the cardinal nodes (RHS

c

) and once at the interior nodes (RHS
i

). The
right-hand-side is implemented as a its own sub-group within the the phase. A single RHS Group class is
defined by the user, and then two instances of it are created, one for the cardinal nodes and one for the
interior nodes. In Figure 2, the RHS

c

and RHS
i

groups are represented by the ovals. The RHS Group
class is the responsibility of the user to define, in order to implement the specific equations of motion for
their problem. The assembly of the phase group, for performing the analysis is handled automatically by a
provided implementation in the tool.

C. Equations of Motion for Commercial Aircraft

The equations of motion governing aircraft dyamics must be defined, so they can be computed in the RHS
c

and RHS
i

blocks in Figure 2. Various formulations for the equations of motion have been proposed in
previous studies on the optimization of commercial aircraft trajectories. Betts and Cramer applied a direct
collocation technique to the problem of a planar aircraft trajectory by collocating five states of a planar
aircraft trajectory (h, r, v �, W

total

) and using C
L

and T as control variables.28 Lukaczyk, Wendor↵, et.
al. used a Chebyshev pseudospectral technique to optimize trajectories with assumptions on distinct phases
of flight (climb, level cruise, descent, etc.)3 Kao, Hwang, Martins, Gray, and Moore developed a hybrid
approach based on the collocation of cubic B-splines using range as the independent variable.4 In that
approach, altitude and Mach number are discretized at various B-spline nodes with respect to range, and
the di↵erential equation governing aircraft weight is integrated w.r.t. time.

The approach in this work builds on the work of Kao et. al. For a given aircraft empty weight and a
specified range, we seek to minimize the aircraft initial takeo↵ weight (and thus fuel burn, W

f

) by finding
the optimal flight profile between two points on a flat, two-dimensional Earth. Figure 3 shows simple free-
body-diagram for a commercial aircraft flying in a planar (2D) flight path. The equations of motion for
range and fuel weight are:

ṙ = v cos � (1)

Ẇ
f

= �SFC q S C
T

(2)
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Figure 3. Free-body diagram for a commercial aircraft on a planar flight path.

The thrust specific fuel consumption (SFC) is based on a sea-level value scaled based on altitude.

SFC = SFC
sl

� 1.471 ⇥ 10�6 N

km Ns
h (3)

The altitude time-history and Mach number (M) time-history are treated as dynamic controls in this ap-
proach. The di↵erentiation matrix associated with the collocating LGL polynomials is used to extract the
altitude rate of change, ḣ, from the altitude time history.

ḣ =
2[D

u

] · h
t
seg

(4)

where [D
u

] is the LGL di↵erentiation matrix associated with the collocating LGL polynomial and t
seg

is the
duration of a given segment.

Atmospheric properties are interpolated from data in the same way as done in Reference 4. Once
atmospheric pressure (P ), density (⇢), and temperature (Temp) are known, velocity can be computed as:

v = M
p

�
a

R Temp (5)

where �
a

, R, and Temp are the ratio of specific heats, gas constant, and temperature for the atmosphere,
respectively. The flight path angle then computed as:

� = arcsin
ḣ

v
(6)

Aerodynamic properties of the vehicle are interpolated from quad-variate data tables:

C
L

, C
D

, C
M

= f(M, h, ↵, ⌘) (7)

where ↵ is the angle of attack and ⌘ is the elevator deflection angle of the aircraft. Aerodynamic data used
is based on the NASA Common Research Model (CRM).29 To enforce steady flight and trim the aircraft,
↵ and ⌘ are solved via OpenMDAO’s Newton solver, such that the residuals in equations (10) and (11) are
converged.

C
T

=
W

total

sin �

cos ↵ q S
+

C
D

cos ↵
(8)
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C̃
L

=
W

total

cos �

q S
� C

T

sin ↵ (9)

R(↵) = C
L

� C̃
L

= 0 (10)

R(⌘) = C
M

= 0 (11)

Coe�cient of thrust, C
T

, is taken as an independent parameter to provide decent numerical scaling for
equations (8) through (11). The actual thrust is then:

T = C
T

q S (12)

We define a throttle value, ⌧ , as the current thrust divided by the maximum available thrust, which itself is
a function of the current Mach and altitude, as well as sea-level values pressure (P

sl

), and maximum thrust
(T

max sl

). To ensure that the optimizer keeps thrust within physically valid limits ⌧ is constrained to be
between 0.01 and 1 throughout the mission. However, it should be noted that this formulation only requires
⌧ to be within the bounds at the final converged solution and that during convergence it could exceed the
physically valid range.

T
max

= T
max sl

✓
P

P
sl

◆
(13)

⌧ =
T

T
max

(14)
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Figure 4. The extended design structure matrix the right-hand-side of the commercial aircraft trajectory
optimization problem.31

The extended design structure matrix for the right-hand-side equations is shown in Figure 4. The Flight
Equilibrium group in this figure represents the implicit equations (10) and (11), which are solved with a
Newton solver. The presence of these implicit equations is one of the major motivations for using the
OpenMDAO framework, which provides automatic coupled derivatives that allow the analytic derivatives
for the optimizer to be computed very e�ciently.30
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V. Cases and results

Table 1 summarizes the problem formulation for the planar commercial aircraft trajectory optimization
problem with standard path constraints. Note in this formulation the initial values of range, altitude, and
fuel weight, as well as the final values of range and altitude, are bound-constrained variables.

Variable/function Description Lower Upper Dimension

minimize Wf [0] initial fuel weight

parameters t0 initial time 0 0 1

tp flight duration 100 7200 1

rc[1 : �1] range at cardinal nodes 0 1 11

Wf [: �1] fuel load at cardinal nodes 0 105 12

h[1 : �1] altitude at nodes 0 20 23

48

subject to ḣ(i,�1) � ḣ(i+1,0) control rate segmenti continuity 0 0 11

�ri[:] range defects 0 0 12

�Wf [:] fuel-weight defects 0 0 12

⌧ [:] throttle limit 0.01 1.0 36

71

Table 1. The commercial aircraft optimal control problem with 12 segments of 2 cardinal nodes each.

We examine two ways of constraining the throttle parameter ⌧ . If left unconstrained, the optimizer is
free to find a trajectory in which the thrust necessary to balance (8) through (11) is outside the aircraft’s
capability. The throttle parameter ⌧ is evaluated at each node (both cardinal and interior) in the trajectory,
and treated as a path constraint using one of two methods. When treated as a traditional path constraint, the
value of ⌧ at each node is subject to constraint, resulting in an additional scalar constraint for each node in
the trajectory. The other method tested uses the Kreisselmeier-Steinhsauser (K-S) function to aggregate the
extremal values of ⌧ into two scalar constraints; one for the upper bound and one for the lower bound.32 The
use of constraint aggregation reduces the number of rows in the Jacobian by combining a set of constraints
to a single scalar value, which is computationally beneficial when using the adjoint method to solve for total
derivatives for the optimizer.

A. Comparison of Trajectories of Varying Range

To check the general functionality of the tool, it was run on missions of varying range. Figure 5 shows the
result of a sweep on range. Note the range in the plot is normalized to 1.0 to give an indication as to how
quickly the aircraft reaches cruise altitude. These results match up well with those reported in the original
work on PyMission, which serves as a verification of this implementation of the equations of motion.4

Figure 5. Flight profile and fuel consumption vs normalized range for constant Mach mission ranges from
500-2500km.
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Of note is the oscillation in the altitude history at certain ranges. These oscillations are not physical, but
rather artifacts due to non-optimal segment spacing. In the top graph of Figure 6 we show that increasing the
number of segments, for an optimization on a fixed 1500 km mission, removes these artifacts and converges to
a smoother result. However, adding segments naively across the entire mission is computationally wasteful.
Ultimately this will be addressed by a grid refinement algorithm that allows us to achieve a good balance of
accuracy in the solution and run time.

Figure 6. Flight profile and fuel consumption vs range for constant Mach mission with varying number of
collocation segments.

The data in the bottom graph of Figure 6 shows that regardless of the number of segments the overall
fuel burn does not vary by more than 0.025%. Hence we conclude that the oscillations don’t adversely a↵ect
the fuel burn predictions and that it is reasonable to save computational cost in this case by reducing the
segment count.

B. The e↵ect of derivative calculation on performance and results

For the single commercial aircraft trajectory optimization problem defined in Table 1, we used four techniques
to compute the objective gradient and constraint Jacobian:

1. Serial finite-di↵erence

2. Parallel finite-di↵erence (4 CPU’s)

3. Serial forward analytic derivatives

4. Serial adjoint analytic derivatives

We examine the performance of computing finite-di↵erence derivatives in both serial and parallel, where the
design variables to be perturbed are divided up among the available CPUs. Given the availability of multi-
core CPUs on practically all desktops and laptops, its reasonable to assume that parallel finite-di↵erence
(FD) is an option for practically any user. Note that in this implementation we do not employ sparse
finite di↵erencing techniques,33 where multiple finite di↵erence steps can be taken simultaneously across
the non-linear analysis. This technique can provide a substantial speed increase for derivative computation
with finite-di↵erences, but can only be employed in special cases where many of the design variables do
not directly a↵ect the objective function and only a↵ect specific constraints. This kind of sparsity if a
fundamental property of the collocation forumaltion used here, where the objective function is only directly
a↵ected by design variable values in the last segment of the simulation. Future work will compare sparse-finite
di↵erencing to analytic derivatives methods.

We also examine both forward and adjoint modes for computing total derivatives. Forward mode is
generally faster when there are fewer design variables than constraints, while adjoint mode is generally faster
when there are fewer constraints than design variables. Both forward and reverse methods o↵ered promise for
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this problem, depending on whether the full set of path constraints on ⌧ were used of if they were aggregated
via K-S function.

For general collocation problems, the best analytic derivative method will be problem specific. For
example, an initial value problem with no static or dynamic controls (a pure simulation without any optimal
control features) will have a square Jacobian matrix and should favor neither method, though in practice the
forward method is usually faster for this case. Adding dynamic controls substantially increases the number
of design variables (one per-cardinal node, per-segment, per-dynamic control) and would thus tend to favor
adjoint mode. Conversely, each additional path constraint adds a constraint at each node and would thus
tend to favor forward mode. In the constant Mach problem posed in Table 1, we have one dynamic control
(h) and two path constraints (upper and lower bounds on ⌧). We also add constraints at each segment
boundary to ensure that the dynamic controls are C1 continuous (continuous in their first time-derivative).
That yields a total of 48 design variables and 71 constraints. Therefore, the forward mode should provide
better performance.

Table 2. Performance results for various derivative methods. Note the relative change in performance of the
adjoint analytic method when changing from standard path constraints to K-S aggregated path constraints.

Constraint type Fuel Burn (kg) Iterations

Path 20063.1 22

K-S 20073.4 25

Table 3. Performance results for single mission with forward analytic derivatives.

Table 2 shows the run time results for the various derivatives computation modes with the aggregated
and non-aggregated path constraints. As expected, the forward analytic method of computing derivatives
performs the fastest when the path constraints are not aggregated, with the parallel FD coming in a close
second. The adjoint analytic method is about 30% slower, which is also expected given the relative number
of design variables and constraints. The serial finite-di↵erence method is 3 times slower than the forward
analytic derivatives. These speed results clearly demonstrate the benefit of analytic derivatives in terms of
overall compute cost. The serial finite-di↵erence case is both slow and computationally expensive. While
the wall time for the parallel finite-di↵erence case is nearly equal to that of the forward analytic case, that
speed is achieved by spreading the compute cost across 4 CPUs and thus the overall compute cost is the
same for both serial and parallel finite-di↵erence.

When aggregating the path constraint via the K-S function the number of constraints is reduced by 34
because the 36 ⌧ constraints (one at each of the 36 cardinal and interior nodes in the phase) are aggregated
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into 2 scalar constraints. In that case the adjoint solution shows better performance compared to the forward
method, which is expected. The K-S constrained versions sometimes exhibit more di�culty in convergence.
This is a well known weakness of the K-S aggregation approach, where multiple active (or nearly active)
constraints can cause convergence trouble.34,35 This di�culty in convergence is not present in the non-
aggregated form. Also note that the K-S function provides a slightly conservative value for constraint
satisfaction, and thus the objective is slightly worse than in the non-aggregated case. Some of these issues
could possibly be alleviated by using an altenate aggregation formulation, such as the induced aggregation
method devloped by Kennedy and Hicken.34 Investigations into alternate aggregation methods will be the
subject of future work.

C. Solving Multiple Simultaneous Trajectories in Parallel

In addition to using parallelization to improve performance of the finite di↵erence scheme, OpenMDAO gives
us the capability to parallelize all computations. In this work we considered three approaches. In the first,
we distribute the RHS evaluations across the available CPUs. For particularly large problems this may be
beneficial. But with only 12 segments and a total of 36 nodes, the computational burden is not particularly
high to begin with. Having particularly expensive calculations in the RHS would potentially change this
but, as is, we saw zero benefit to parallelizing calculations within a trajectory.

The second approach we examined, one that is e↵ective even for fairly simple trajectories such as those
shown here, is to use parallelization to solve multiple trajectories simultaneously. Using the same basic
problem formulation, we define four individual trajectories, each with a di↵erent range target, and solve
them simultaneously. The objective function for the overall problem is defined by summing up the initial
fuel weights of each of the individual trajectories.

By composing the objective as a linear combination of the four mission fuel burns, the objective of
course depends on all four trajectories. However the various constraints on each mission are independent of
calculations in all the other missions and depend only on the design variables for that mission. Because of
this independence, it is possible to solve for some of the derivatives in parallel. This situation is analagous to
the sparse finite-di↵erencing method mentioned earlier, but it applies to analytic derivatives instead. This
kind of parallelism of the constraints is common in multi-point optimization problems, and OpenDMAO
provides an additional level of parallelism to help take advantage of it. Results for both the serial and
parallel derivatives are presented, for comparison purposes and give an indication of the additional increase
in parallel scaling that is o↵ered by OpenMDAO. Currently our implementation is limited to parallelizing
analytic derivative computations across multiple trajectories However, given the sparse nature of segments,
the parallel derivatives approach also shows promise for use within a phase.

Table 5 shows the results of these various approaches in terms of run time. The objective and iteration
counts are shown in Table 4. All standard path constraint cases showed similar objectives and iteration
counts regardless of the derivative type used, and the same is true for the aggregated constraint cases. The
data shows a 60% reduction in compute time for the parallel-derivatives approach vs the serial-derivatives
approach, which highlights the importance of solving the derivatives in parallel when the appropriate sparsity
is available in the problem. With out the parallel derivatives, using only parallelization for the non-linear
function evaluations, only a modest compute savings was achieved compared to the serial case. It’s only
with the parallel adjoints that appropriate parallel scaling is achieved.

Constraint type Fuel Burn (kg) Iterations

Path 50865.7 30

K-S 50943.0 59

Table 4. Performance results for multiple missions with forward analytic derivatives.

As before, the aggregated constraint cases resulting in larger (less optimal) fuel consumption because
of the conservative nature of the K-S constraint. They also showed a significant increase in the number of
optimization major iterations needed to reach the same convergence, compared to the non-aggregated cases.
As in the single mission case, adjoint analytic derivatives provide the fastest performance among the K-S
constrained cases. For the cases using a standard path constraint, the forward analytic derivative is fastest,
and that case is fast overall.
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Table 5. Performance results for various parallelization schemes. All cases with aggregated ⌧ constraints took
60 iterations to converge. Cases using a standard path constraint converged in 26 iterations.

VI. Conclusions

We have demonstrated the applicability of a segmented Legendre-Gauss-Lobatto collocation scheme to
the problem of commercial aircraft trajectory optimization. We use the approach of Reference 4 in which
altitude and Mach number are treated as dynamic control variables whose values are specified at nodes
throughout the problem, while steady flight assumptions are applied throughout the given flight profile.

We examined various techniques for computing derivatives for the problem. The use of standard path
constraints in the problem, in which a constraint is added at every node within the phase, results in a
Jacobian matrix with far more rows than columns. In that case, the use of forward analytic derivatives
resulted in faster run times than those cases which used adjoint analytic derivatives. We addressed this issue
through the use of constraint aggregation via the Kreisselmeier-Steinhsauser (K-S) function from Reference
32. The adjoint derivative approach was indeed fastest when the path constraint on throttle was aggregated,
but poor convergence properties resulting from the use of the K-S function meant that the use of standard
path constraints with the forward analytic method was fastest overall.

The segmented nature of the collocation approach gives us the opportunity to parallelize the compu-
tations involved in a number of ways. Three such ways are demonstrated here. We can parallelize the
simultaneous optimization of multiple trajectories, or the computation of both finite-di↵erence derivatives or
analytic derivatives. Further improvements can be made by leveraging the sparsity of the resulting nonlinear
programming problem to compute more derivatives simultaneously and in parallel; a parallel and analytic
extension of the sparse finite di↵erence approach used in state of the art collocation-based trajectory op-
timization software. The results demonstrate that taking advantage of the parallelism for solving analytic
derivatives is key to achiving e�cient parallel scaling. Future work will remove some of the simplifying
assumptions in the equations of motion and will leverage the optimal control formulation to study aircraft
design problems with time varying control schemes as part of the design space.
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